Hyers-Ulam-Rassias stability of n-Jordan *-homomorphisms on C*-algebras
نویسندگان
چکیده مقاله:
In this paper, we introduce n-jordan homomorphisms and n-jordan *-homomorphisms and Also investigate the Hyers-Ulam-Rassiasstability of n-jordan *-homomorphisms on C*-algebras.
منابع مشابه
Hyers-ulam-rassias Stability of Jordan Homomorphisms on Banach Algebras
We prove that a Jordan homomorphism from a Banach algebra into a semisimple commutative Banach algebra is a ring homomorphism. Using a signum effectively, we can give a simple proof of the Hyers-Ulam-Rassias stability of a Jordan homomorphism between Banach algebras. As a direct corollary, we show that to each approximate Jordan homomorphism f from a Banach algebra into a semisimple commutative...
متن کاملhyers-ulam-rassias stability of n-jordan *-homomorphisms on c*-algebras
in this paper, we introduce n-jordan homomorphisms and n-jordan *-homomorphisms and also investigate the hyers-ulam-rassiasstability of n-jordan *-homomorphisms on c*-algebras.
متن کامل$n$-Jordan homomorphisms on C-algebras
Let $nin mathbb{N}$. An additive map $h:Ato B$ between algebras $A$ and $B$ is called $n$-Jordan homomorphism if $h(a^n)=(h(a))^n$ for all $ain A$. We show that every $n$-Jordan homomorphism between commutative Banach algebras is a $n$-ring homomorphism when $n < 8$. For these cases, every involutive $n$-Jordan homomorphism between commutative C-algebras is norm continuous.
متن کاملFixed point approach to the Hyers-Ulam-Rassias approximation of homomorphisms and derivations on Non-Archimedean random Lie $C^*$-algebras
In this paper, using fixed point method, we prove the generalized Hyers-Ulam stability of random homomorphisms in random $C^*$-algebras and random Lie $C^*$-algebras and of derivations on Non-Archimedean random C$^*$-algebras and Non-Archimedean random Lie C$^*$-algebras for the following $m$-variable additive functional equation: $$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...
متن کاملHyers-Ulam-Rassias stability of generalized derivations
One of the interesting questions in the theory of functional equations concerning the problem of the stability of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to an exact solution of the given functional equation? The first stability problem was raised by Ulam during his talk at the University of Wisconsin in 194...
متن کاملHyers-Ulam and Hyers-Ulam-Rassias stability of nonlinear integral equations with delay
In this paper we are going to study the Hyers{Ulam{Rassias typesof stability for nonlinear, nonhomogeneous Volterra integral equations with delayon nite intervals.
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 39 شماره 2
صفحات 347- 353
تاریخ انتشار 2013-05-15
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023